

D Domains: A De Novo Scaffold for the Development of Targeted Therapeutics

David LaFleur Sr. Director, Discovery

Presented: PEGS Boston, May 11-13, 2021

D domain Scaffold

Therapeutic Platforms: ddCAR & ARC-SparX Clinical Programs

D domain Scaffold

Therapeutic Platforms: ddCAR & ARC-SparX Clinical Programs

CAR-T Cell Receptor:

Why use an alternative to scFv for targeting?

- High affinity not required for CAR-T
- Novel (non-CDR) topologies may bind to novel epitopes
- Creating multi-specific or multiepitopic chimeras may be less challenging with a less complex domain fold

Proc. Natl. Acad. Sci. USA Vol. 96, pp. 5486–5491, May 1999 Biophysics

Solution structure and dynamics of a *de novo* designed three-helix bundle protein

SCOTT T. R. WALSH[†], HONG CHENG[‡], JAMES W. BRYSON[§], HEINRICH RODER^{†‡}, AND WILLIAM F. DEGRADO^{†¶}

- $\alpha_3 D$ (PDB 2A3D)
- Single-chain, anti-parallel, three-helix bundle, containing all amino acids except cysteine
- Hydrophobic core (red), surface electrostatics and alpha-helical capping structure in loops
- Exceptional thermal stability and ultra-fast folding (Zhu etal, PNAS, 2003)

ARCELLX

D domain Library Design

Library	Sequence Profile : X = all amino acid except proline and cysteine
F1	MGSWXXFKXXLAXIKXXLEALGGSEAELAXFEXXIAXFEXXLQXYKGKGNPEVEALRKEAAAIRDELQAYRHN
F2	MGSWAEFKQRLAAIKTRLEALGGSEAELAAFXXEIXAFXXELXAYKGKGNPEVEALXXEAXAIXXELXAYRHN
F3	MGSWXEFXXRLXAIXXRLXALGGSEAELAAFEKEIAAFESELQAYKGKGNPEVEXLRXXAAXIRXXLQAYRHN
C1	MGSWXXFKXXLAXIKXXLEALGGSEAELAAFXXEIXAFXXELXAYKGKGNPEVEXLRXXAAXIRXXLQAYRHN
C2	MGSWXEFXXRLXAIXXRLXALGGSEAELAXFEXXIAXFEXXLQXYKGKGNPEVEALXXEAXAIXXELXAYRHN

- α₃D has no inherent ligand
- Strategy: Randomize contiguous surface exposed positions
- F1, F2 & F3 faces (+2) initial designs
- Used all amino acids except Pro and Cys
- Phage libraries generated with Kunkel mutagenesis and trimer-codon oligos

Pilot Panning Campaign

5 Libraries Pool of F1, F2 & F3 Pool of C1 & C2

10 Targets CD137 CD47 CTLA4 KIR2DL2 DR5 LAG3 OX40 PD1 PDL1 TIM3

0.0 0.5 1.0 1.5 2.0 Control Binding (A450)

0.0 0.5 1.0 1.5 Control Binding (A450)

Screening Workflow

Profi F3 **Phage Selection** Binding Sequencing s & ec 00.5 & Selecition 0.5 1.0 1.5 2.0 Control Binding (A450) 0.0 ELISA Data PS0246.R3.001 (/nlate/70 20. **FARGET** -20 Library -22 p 2 1.0 -24 50.5 **b**05 (or Library Pools) Immunogenicity 0.0 -0.5 1.0 1.5 2 ontrol Binding (A450) 0.0 0.5 1.0 1.5 2.0 Control Binding (A450) 0.5 1.0 1.5 2.0 Control Binding (A450) 0.0 8 8 **Antigens** CONTROL 8 8 -22 -24 **PDL1 Binders: Sequence Analysis** 0.0 0.5 1.0 1.5 2 Control Binding (A450) ELISA Plate 90246-B3-01-LUI BB2 tv PS0246-R3-01-control tv 2.0 Kinetics and Epitopes (A450) Diverse **O**llection **T Cell Biology Assessments** Leads Profile Manage ELISA Files arget Bindir 202 Activation, Cytotoxicity, converted to **F**3 of D domains Manane FLISA data (/FLISA manane/7) Library **Proliferation & Cytokine** ddCAR & epresentation 0.0 0.5 Control release **SparX Cross Reactivity** Wimley - -20 TCR & Microarray -22 Dd18 Dd08 -24 In Vivo tumor models Dd04 _26 Hvdrophobicity ARC-T Dd32 0.0 0.5 1.0 1.5 2.0 Control Binding (A450) 0.0 0.5 Control

.

•

Immunogenicity

- a₃D inherently low *in silico* immunogenicity score
- D domains with high scores are excluded from development or deimmunized
- Abzena EpiScreen[™]: Assay responses, using donors representing diverse allelic population, are comparable to therapeutics such as trastuzumab

ARCELLX

Kinetics of D domains derived from naïve libraries

Many KDs are 1 to 100nM

Kinetics are comparable to those derived from naïve antibody libraries

Affinity and Maturation

Single, point mutations to a CD123-binding naïve clone alter affinity over 200 fold range

Combining mutations can achieve sub-nanomolar affinities (not shown)

D domain Scaffold

Therapeutic Platforms: ddCAR & ARC-SparX

Clinical Programs

ARC-SparX Advantage: Controllable Potency

Control of ARC-T potency through SparX dosing

Control of ARC-T potency through SparX affinity and valency

% Lysis

CD123+ NALM6 cells Iow affinity CD123-sparX med affinity CD123-sparX Monovalent high affinity CD123-sparX Iow affinity CD123-sparX

ARCELLX

ARC-SparX Advantage: Adaptable Targeting

D domain Scaffold

Therapeutic Platforms: ddCAR & ARC-SparX

Clinical Programs

Clinical Programs

ACLX-001

- First ARC-SparX clinical program
- 2-component therapy: ARC-T Cell + bivalent SparX, targeting BCMA
- For treatment of relapsed and refractory multiple myeloma
- FDA clearance of IND application for ACLX-001 (March 2021)
- Phase 1 clinical trial expected to begin in the second half of 2021

CART-ddBCMA

- First ddCAR clinical program
- Targeting BCMA
- For treatment of relapsed and refractory multiple myeloma
- Phase 1 clinical trial is in progress

Clinical Programs: CART-ddBCMA

Adapted from Frigault et al, ASH 2020 Abstract #3199; please refer to full ASH presentation for safety and efficacy data.

Subject #	Age/Sex	Myeloma	Prior Lines / Prior ASCT	Prior Therapy Status	High Risk Cytogenetics	Bone Marrow Plasma Cells	Extra- Medullary	Dose (+/- 20%) CAR+ T Cells	CART-ddBCMA Release	
									VCN*	% CAR+
1	73/M	lgA	5/ No	penta-refractory	t(4;14), 1q+	95%	Yes	100 million	2.34	78
2	73/F	Light Chain	5 / No	penta-refractory + BRAFi	sample not evaluable	0%	Yes	100 million	2.12	76
3	75/M	lgA	7 / No	penta-refractory + anti-CS1 mAb	1q+	95%	Yes	100 million	2.61	72
4	74/F	lgG	5 / Yes	penta-refractory	del17p, 1q+	70%	No	100 million	2.33	76
5	66/F	Light Chain	5/Yes	Lþénta-refractory +BRAFi	1q+	10%	No	100 million	2.33	73
6	66/F	lgA	7 / Yes	penta-refractory + anti-CS1 mAb	1q+	< 5%	Yes	100 million	3.07	87

Penta-refractory: refractory to \geq 2 PIs, \geq 2 IMiDs, and anti-CD38

ARCELLX

*Vector Copy Number

Time on Study from CART-ddBCMA Infusion (as of 29 Oct 2020)

Adapted from Frigault et al, ASH 2020 Abstract #3199; please refer to full ASH presentation for safety and efficacy data.

- First 6 patients received 100 million CART-ddBCMA+ cells and showed robust cell expansion
- 100% response rate among first six patients per IMWG criteria
- 4 stringent complete responses (sCR), 2 partial responses (PR)
- 5/6 subjects experienced rapid clearance of sFLC and SPEP within 2 months

ARCELLX

- **Baseline:** High disease burden (95% BMPC) with IgA myeloma, extra-medullary disease, penta-refractory, and high-risk cytogenetics.
- Month 1: Bone marrow negative, Minimal Residual Disease (MRD)-negative, and PET-CT negative

19

- **D domains** are a robust scaffold for the generation of binders to a variety of targets and exhibit properties required in a targeting domain
- The **ddCAR** and **ARC-SparX** platforms offer high performance and novel solutions to difficult therapeutic situations
- CART-ddBCMA facilitates deep and durable responses in patients with poor prognoses

Thank You

Arcellx Team

Clinical Teams

- University of Chicago Comprehensive Cancer Center
- Massachusetts General Hospital Cancer Center
- Beth Israel Deaconess Medical Center
- Dana-Farber Cancer Institute

Patients and their families

David LaFleur dlafleur@arcellx.com